Distribution of kainate receptor subunits at hippocampal mossy fiber synapses.
نویسندگان
چکیده
Kainate receptors function as mediators of postsynaptic currents and as presynaptic modulators of synaptic transmission at mossy fiber synapses. Despite intense research into the physiological properties of mossy fiber kainate receptors, their subunit composition in the presynaptic and postsynaptic compartments is unclear. Here we describe the distribution of kainate receptor subunits in mossy fiber synapses using subunit-selective antibodies and knock-out mice. We provide morphological evidence for the presynaptic localization of KA1 and KA2 receptor subunits at mossy fiber synapses. Immunogold staining for KA1 and KA2 was commonly seen at synaptic contacts and in vesicular structures. Postsynaptic labeling in dendritic spines was also observed. Although KA1 predominantly showed presynaptic localization, KA2 was concentrated to a greater degree on postsynaptic membranes. Both subunits coimmunoprecipitated from hippocampal membrane extracts with GluR6 but not GluR7 subunits. These results demonstrate that KA1 and KA2 subunits are localized presynaptically and postsynaptically at mossy fiber synapses where they most likely coassemble with GluR6 subunits to form functional heteromeric kainate receptor complexes.
منابع مشابه
Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses.
Heteromeric kainate receptors (KARs) containing both glutamate receptor 6 (GluR6) and KA2 subunits are involved in KAR-mediated EPSCs at mossy fiber synapses in CA3 pyramidal cells. We report that endogenous glutamate, by activating KARs, reversibly inhibits the slow Ca2+-activated K+ current I(sAHP) and increases neuronal excitability through a G-protein-coupled mechanism. Using KAR knockout m...
متن کاملLoss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2-/- mice.
Multimeric assemblies of kainate (KA) receptor subunits form glutamate-gated ion channels that mediate EPSCs and function as presynaptic modulators of neurotransmitter release at some central synapses. The KA2 subunit is a likely constituent of many neuronal kainate receptors, because it is widely expressed in most neurons in the CNS. We have studied the effect of genetic ablation of this recep...
متن کاملIdentification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus.
To understand the physiological role of kainate receptors and their participation in seizure induction in animal models of epilepsy, it will be necessary to develop a comprehensive description of their action in the CA3 region of the hippocampus. Activation of presynaptic kainate receptors depresses excitatory synaptic transmission at mossy fiber and associational-commissural inputs to CA3 pyra...
متن کاملRapid and Differential Regulation of AMPA and Kainate Receptors at Hippocampal Mossy Fibre Synapses by PICK1 and GRIP
We identified four PDZ domain-containing proteins, syntenin, PICK1, GRIP, and PSD95, as interactors with the kainate receptor (KAR) subunits GluR5(2b,) GluR5(2c), and GluR6. Of these, we show that both GRIP and PICK1 interactions are required to maintain KAR-mediated synaptic function at mossy fiber-CA3 synapses. In addition, PKC alpha can phosphorylate ct-GluR5(2b) at residues S880 and S886, a...
متن کاملKainate receptors: knocking out plasticity.
There is increasing evidence that kainate receptors contribute to both postsynaptic and presynaptic signaling. Studies of knockout mice have played a pivotal role in defining the functions of kainate receptors, including a recent study that implicates kainate receptors in frequency-dependent facilitation and long-term potentiation of hippocampal mossy fiber synapses.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 22 شماره
صفحات -
تاریخ انتشار 2003